Flux calibration of the Herschel -SPIRE photometer

نویسندگان

  • G. J. Bendo
  • M. J. Griffin
  • J. J. Bock
  • L. Conversi
  • C. D. Dowell
  • T. Lim
  • N. Lu
  • C. E. North
  • A. Papageorgiou
  • C. P. Pearson
  • M. Pohlen
  • E. T. Polehampton
  • B. Schulz
  • D. L. Shupe
  • B. Sibthorpe
  • L. D. Spencer
  • B. M. Swinyard
  • I. Valtchanov
  • C. K. Xu
چکیده

We describe the procedure used to flux calibrate the three-band submillimetre photometer in the Spectral and Photometric Imaging Receiver instrument on the Herschel Space Observatory. This includes the equations describing the calibration scheme, a justification for using Neptune as the primary calibration source, a description of the observations and data processing procedures used to derive flux calibration parameters (for converting from voltage to flux density) for every bolometer in each array, an analysis of the error budget in the flux calibration for the individual bolometers and tests of the flux calibration on observations of primary and secondary calibrators. The procedure for deriving the flux calibration parameters is divided into two parts. In the first part, we use observations of astronomical sources in conjunction with the operation of the photometer internal calibration source to derive the unscaled derivatives of the flux calibration curves. To scale the calibration curves in Jy beam−1 V−1, we then use observations of Neptune in which the beam of each bolometer is mapped using a very fine scan pattern. The total instrumental uncertainties in the flux calibration for most individual bolometers is ∼0.5 per cent, although a few bolometers have uncertainties of ∼1–5 per cent because of issues with the Neptune observations. Based on application of the flux calibration parameters to Neptune observations performed using typical scan map observing modes, we determined that measurements from each array as a whole have instrumental uncertainties of 1.5 per cent. This is considerably less than the absolute calibration uncertainty associated with the model of Neptune, which is estimated at 4 per cent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-flight calibration of the Herschel-SPIRE instrument*

SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory’s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194−671 μm (447−1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrume...

متن کامل

The data processing pipeline for the Herschel SPIRE Fourier Transform Spectrometer

We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SPIRE observations and produces calibrated spectra for all resolution modes. The spectrometer pipeline shares some elements with the SPIRE photometer...

متن کامل

SPS: a software simulator for the Herschel-SPIRE photometer

Aims. Instrument simulators are becoming ever more useful for planning and analysing large astronomy survey data. In this paper we present a simulator for the Herschel-SPIRE photometer. We describe the models it uses and the form of the input and output data. Methods. The SPIRE photometer simulator is a software package which uses theoretical models, along with flight model test data, to perfor...

متن کامل

SPIRE Point Source Photometry . within the Herschel ⋆ Interactive Processing Environment ( HIPE )

The different algorithms appropriate for point source photometry on data from the SPIRE instrument on-board the Herschel Space Observatory, within the Herschel Interactive Processing Environment (HIPE) are compared. Point source photometry of a large ensemble of standard calibration stars and dark sky observations is carried out using the 4 major methods within HIPE: SUSSEXtractor, DAOphot, the...

متن کامل

Relative pointing offset analysis of calibration targets with repeated observations with Herschel-SPIRE Fourier-Transform Spectrometer

We present a method to derive the relative pointing offsets for SPIRE Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration targets, which were observed regularly throughout the Herschel mission. We construct ratios Robs(ν) of the spectra for all observations of a given source with respect to a reference. The reference observation is selected iteratively to be the one with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013